
Stateful Objects	and	Stable	
Identities

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.2

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	for	Lesson	11.2

• Sometimes	objects	need	to	ask	questions	of	
each	other	over	time.

• To	accomplish	this,	the	object	being	queried	
needs	to	have	a	stable	identity	that	the	
querier can	rely	on.

• In	this	lesson,	we'll	show	what	can	happen	
when	this	fails.

2

Sometimes	making	a	new	object	
doesn't	do	what's	needed

• We	now	begin	a	sequence	of	programs	
illustrating	patterns	of	object	communication.	

• These	programs	will	involve	a	ball	bouncing	on	
a	canvas

• What’s	interesting,	though,	is	that	the	canvas	
has	an	draggable wall,	so	the	ball	needs	to	
find	out	about	the	position	of	the	wall	at	
every	tick.

3

Let's	look	at	some	code:	10-2A-ball-
and-wall.rkt

;; The World implements the WorldState<%> interface

(define WorldState<%>
(interface ()

; -> WorldState
; GIVEN: no arguments
; RETURNS: the state of the world at the next tick
after-tick

; Integer Integer MouseEvent-> WorldState
; GIVEN: a location
; RETURNS: the state of the world that should follow the
; given mouse event at the given location.
after-mouse-event

; KeyEvent -> WorldState
; GIVEN: a key event
; RETURNS: the state of the world that should follow the
; given key event
after-key-event

; -> Scene
; GIVEN: a scene
; RETURNS: a scene that depicts this World
to-scene
))

;; Every object that lives in the world must implement the Widget<%>
;; interface.

(define Widget<%>
(interface ()

; -> Widget
; GIVEN: no arguments
; RETURNS: the state of this object that should follow the next tick
after-tick

; Integer Integer -> Widget
; GIVEN: a location
; RETURNS: the state of this object that should follow the
; specified mouse event at the given location.
after-button-down
after-button-up
after-drag

; KeyEvent -> Widget
; GIVEN: a key event and a time
; RETURNS: the state of this object that should follow the
; given key event
after-key-event

; Scene -> Scene
; GIVEN: a scene
; RETURNS: a scene like the given one, but with this object
; painted on it.
add-to-scene
))

4

WorldState<%>	and	Widget<%>	
interfaces	as	before

Wall<%>	interface
(define Wall<%>
(interface (Widget<%>)

; -> Int
; RETURNS: the x-position of the wall
get-pos

))

5

The	wall	will	have	an	extra	method	
that	returns	the	current	position	of	

the	wall.			This	information	 is	
needed	by	the	ball.

This	means	that	the	
Wall<%>	interface	

includes	all	the	methods	
from	the	Widget<%>	
interface.		This	is	called	
"interface	inheritance."

The	Ball%	class
;; A Ball is a (new Ball%
;; [x Int][y Int][speed Int][w Wall])

(define Ball%
(class* object% (Widget<%>)

(init-field w) ;; the Wall
...
;; after-tick : -> Ball
;; RETURNS: state of this ball
;; after a tick.
(define/public (after-tick)
(if selected? this

(new Ball%
[x (next-x-pos)]
[y y]
[speed (next-speed)]
[selected? selected?]
[saved-mx saved-mx]
[saved-my saved-my]
[w w])))

;; -> Integer
;; position of the ball at the next
;; tick.
;; STRATEGY: ask the wall for its
;; position and use that to
;; calculate the upper bound for
;; the ball's x position
(define (next-x-pos)
(limit-value

radius
(+ x speed)
(- (send w get-pos) radius)))

;; Number^3 -> Number
;; WHERE: lo <= hi
;; RETURNS: val, but limited to the
;; range [lo,hi]
(define (limit-value lo val hi)
(max lo (min val hi)))

6

At	every	tick,	the	ball	asks	w	about	
its	position

The	wall	is	
an	init-field	
of	the	ball

The	Wall%	class
;; A Wall is (new Wall% [pos Integer]
;; [saved-mx Integer]
;; [selected? Boolean])
;; all these fields have default values.

(define Wall%
(class* object% (Wall<%>)

;; the x position of the wall
(init-field [pos INITIAL-WALL-POSITION])
;; is the wall selected? Default is false.
(init-field [selected? false])

;; if the wall is selected, the x position of
;; the last button-down event near the wall,
;; relative to the wall position
(init-field [saved-mx 0])

(super-new)

;; the extra behavior for Wall<%>
(define/public (get-pos) pos)

; after-button-down : Integer Integer -> Wall
; GIVEN: the location of a button-down event
; STRATEGY: Cases on whether the event is near
; the wall
; RETURNS: A wall like this one, but selected, and
; with mouse x location (relative to the wall
; position) recorded

(define/public (after-button-down mx my)
(if (near-wall? mx)
(new Wall%
[pos pos]
[selected? true]
[saved-mx (- mx pos)])

this))

; after-drag : Integer Integer -> Wall
; GIVEN: the location of a drag event
; STRATEGY: Cases on whether the wall is selected.
; If it is selected, returns a wall like this one,
; except that
; the vector from its position to
; the drag event is equal to saved-mx
(define/public (after-drag mx my)
(if selected?
(new Wall%
[pos (- mx saved-mx)]
[selected? true]
[saved-mx saved-mx])

this))

7

The	code	for	the	Wall%	
class	is	perfectly	routine

Here's	a	demo

8

If	you	have	difficulty	with	this	video,	
look	at	it	on	YouTube,	or	just	run	10-

2A-ball-and-wall.rkt	.

What	went	wrong?

• After	a	drag,	however,	the	world	has	a	new
wall	at	the	new	position.		

• But	the	ball	still	points	at	the	original	wall,	in	
the	original	position.

• So	the	ball	bounces	at	the	position	where	the	
wall	used	to	be.

9

We	need	to	make	the	wall	stateful

• We	need	to	give	the	wall	a	stable	identity,	so	
balls	will	know	who	to	ask.

• But	the	information	in	the	wall	must	change!
• Solution:	we	need	to	make	the	box	MUTABLE.
• In	other	words,	it	should	have	state.
• What	does	that	mean?	How	do	we	do	this?		
That	is	the	topic	of	the	next	two	lessons.

10

Next	Steps

• Study	10-2A-ball-and-wall.rkt	in	the	Examples	
folder.

• In	the	next	lesson,	we'll	consider	the	
difference	between	real	state	and	simulated	
state	in	a	little	more	detail.

• Then	we'll	consider	how	to	program	systems	
with	state	in	our	framework.

11

