Stateful Objects and Stable
ldentities

CS 5010 Program Design Paradigms
"Bootcamp”
Lesson 10.2

@ © Mitchell Wand, 2012-2015
s 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




Key Points for Lesson 11.2

 Sometimes objects need to ask questions of
each other over time.

* To accomplish this, the object being queried
needs to have a stable identity that the
guerier can rely on.

* |n this lesson, we'll show what can happen
when this fails.




Sometimes making a new object
doesn't do what's needed

 We now begin a sequence of programs
illustrating patterns of object communication.

* These programs will involve a ball bouncing on
a canvas

 What'’s interesting, though, is that the canvas
has an draggable wall, so the ball needs to
find out about the position of the wall at
every tick.




Let's look at some code: 10-2A-ball-
and-wall.rkt

55 The World implements the WorldState<%> interface ;5 Every object that lives in the world must implement the Widget<%>
;3 interface.
(define WorldState<%>
(interface () (define Widget<%>
(interface ()
;3 -> WorldState

; GIVEN: no arguments 5 -> Widget
; RETURNS: the state of the world at the next tick ; GIVEN: no arguments
after-tick 5 RETURNS: the state of this object that should follow the next tick
after-tick
; Integer Integer MouseEvent-> WorldState
; GIVEN: a location ; Integer Integer -> Widget
;3 RETURNS: the state of the world that should follow the ; GIVEN: a location
; given mouse event at the given location. ; RETURNS: the state of this object that should follow the
after -mouse-event ; specified mouse event at the given location.
after -button-down
; KeyEvent -> WorldState after -button-up
; GIVEN: a key event after-drag
3 RETURNS: the state of the world that should follow the
; given key event ; KeyEvent -> Widget
after -key-event ; GIVEN: a key event and a time
; RETURNS: the state of this object that should follow the
3 -> Scene ; given key event
5 GIVEN: a scene after -key-event
; RETURNS: a scene that depicts this World
to-scene ; Scene -> Scene
)) ; GIVEN: a scene

; RETURNS: a scene like the given one, but with this object
; painted on it.
add-to-scene

))

WorldState<%> and Widget<%>
interfaces as before




Wall<%> interface

(define Wall<%> This means that the
(interface (Widget<%>) Wall<%> interface
\ includes all the methods
5 -> Int from the Widget<%>
;3 RETURNS: the x-position of the wall interface. This is called
get-pos "interface inheritance."
))

The wall will have an extra method
that returns the current position of
the wall. This information is
needed by the ball.




The Ball% class

55 A Ball is a (new Ball% 55 -> Integer
55 [x Int][y Int][speed Int][w Wall]) ;3 position of the ball at the next
;3 tick.
(define Ball% The wallis 55 STRATEGY: ask the wall for its
(class* object% (Widget<%>) x/ﬂanimbﬁew 55 position and use that to
(init-field w) ;; the Wall of the ball ;3 calculate the upper bound for
. ;3 the ball's x position
;5 after-tick : -> Ball (define (next-x-pos)
;3 RETURNS: state of this ball (1limit-value
;3 after a tick. radius
(define/public (after-tick) (+ x speed)
(if selected? this (- (send w get-pos) radius)))
(new Ball%
[x (next-x-pos)] 35 Number”~3 -> |Number
[y v] 55 WHERE: lo <= hi
[speed (next-speed)] 53 RETURNS: val, but limited to the
[selected? selected?] 53 range [lo,hi
[saved-mx saved-mx] (define (limit-value lo val hi)
[saved-my saved-my] (max lo (min val hi)))
[w w])))

At every tick, the ball asks w about
its position




The Wall% class

55 A Wall is (new Wall% [pos Integer]

HH [saved-mx Integer]
HH [selected? Boolean])
;3 all these fields have default values.

(define Wall%
(class* object% (Wall<%>)

;3 the x position of the wall

(init-field [pos INITIAL-WALL-POSITION])
;5 is the wall selected? Default is false.
(init-field [selected? false])

33 1f the wall is selected, the x position of
;3 the last button-down event near the wall,
;3 relative to the wall position

(init-field [saved-mx 0])

(super-new)

;5 the extra behavior for Wall<%>
(define/public (get-pos) pos)

The code for the Wall%
class is perfectly routine

Ve Ve Ve Lo Ve Lo e

(

AN Ve Lo Lo Le W Lo e

after-button-down : Integer Integer -> Wall
GIVEN: the location of a button-down event
STRATEGY: Cases on whether the event is near

the wall

RETURNS: A wall like this one, but selected, and
with mouse x location (relative to the wall
position) recorded

define/public (after-button-down mx my)
(if (near-wall? mx)
(new Wall%
[pos pos]
[selected? true]
[saved-mx (- mx pos)])
this))

after-drag : Integer Integer -> Wall
GIVEN: the location of a drag event
STRATEGY: Cases on whether the wall is selected.
If it is selected, returns a wall like this one,
except that
the vector from its position to
the drag event is equal to saved-mx
define/public (after-drag mx my)
(if selected?
(new Wall%
[pos (- mx saved-mx)]
[selected? true]
[saved-mx saved-mx])
this))




Here's a demo

If you have difficulty with this video,
look at it on YouTube, or just run 10-
2A-ball-and-wall.rkt .




What went wrong?

* After a drag, however, the world has a new
wall at the new position.

e But the ball still points at the original wall, in
the original position.

* So the ball bounces at the position where the
wall used to be.




We need to make the wall stateful

 We need to give the wall a stable identity, so
balls will know who to ask.

e But the information in the wall must change!
e Solution: we need to make the box MUTABLE.
* |n other words, it should have state.

 What does that mean? How do we do this?
That is the topic of the next two lessons.




Next Steps

e Study 10-2A-ball-and-wall.rkt in the Examples
folder.

* |In the next lesson, we'll consider the
difference between real state and simulated
state in a little more detail.

 Then we'll consider how to program systems
with state in our framework.

11




